Algorithms for the minimum non-separating path and the balanced connected bipartition problems on grid graphs

نویسنده

  • Bang Ye Wu
چکیده

For given a pair of nodes in a graph, the minimum non-separating path problem looks for a minimum weight path between the two nodes such that the remaining graph after removing the path is still connected. The balanced connected bipartition (BCP2) problem looks for a way to bipartition a graph into two connected subgraphs with their weights as equal as possible. In this paper we present an O(N logN) time algorithm for finding a minimum weight non-separating path between two given nodes in a grid graph of N nodes with positive weight. This result leads to a 5/4-approximation algorithm for the BCP2 problem on grid graphs, which is the currently best ratio achieved in polynomial time. We also developed an exact algorithm for the BCP2 problem on grid graphs. Based on the exact algorithm and a rounding B.Y. Wu National Chung Cheng University, ChiaYi, Taiwan 621, R.O.C. E-mail: [email protected] 2 technique, we show an approximation scheme, which is a fully polynomial time approximation scheme for fixed number of rows.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algorithms for the minimum non-separating path and the balanced connected bipartition problems on grid graphs (With errata)

For given a pair of nodes in a graph, the minimum non-separating path problem looks for a minimum weight path between the two nodes such that the remaining graph after removing the path is still connected. The balanced connected bipartition (BCP2) problem looks for a way to bipartition a graph into two connected subgraphs with their weights as equal as possible. In this paper we present an algo...

متن کامل

A Metaheuristic Algorithm for the Minimum Routing Cost Spanning Tree Problem

The routing cost of a spanning tree in a weighted and connected graph is defined as the total length of paths between all pairs of vertices. The objective of the minimum routing cost spanning tree problem is to find a spanning tree such that its routing cost is minimum. This is an NP-Hard problem that we present a GRASP with path-relinking metaheuristic algorithm for it. GRASP is a multi-start ...

متن کامل

Balanced judicious bipartitions of graphs

A bipartition of the vertex set of a graph is called balanced if the sizes of the sets in the bipartition differ by at most one. Bollobás and Scott [3] conjectured that if G is a graph with minimum degree at least 2 then V (G) admits a balanced bipartition V1, V2 such that for each i, G has at most |E(G)|/3 edges with both ends in Vi. The minimum degree condition is necessary, and a result of B...

متن کامل

META-HEURISTIC ALGORITHMS FOR MINIMIZING THE NUMBER OF CROSSING OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS

The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for ...

متن کامل

Sufficient conditions for the non-separating paths

For two vertices in a graph, a path between them is non-separating if the remaining graph is connected. A previous work shows that a nonseparating path always exists if the connectivity is more than two. In this paper, we show that to determine if there is a non-separating path is NPcomplete for graphs of connectivity one or two. Sufficient conditions for the existence of a nonseparating path o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Optim.

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2013